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Abstract 

We attempt to create a continuum of functions between addition and 
multiplication (and beyond). Such a function could have practical 
applications. Addition, multiplication, exponentiation, tetration etc. are 
all particular cases of a generalisation of Ackermann’s function for 
successive integral values of one of the arguments. Intermediate 
functions can be viewed as results of a fractional value of this 
argument. Ways of seeking such functions with given properties are 
investigated. It is noted that some other integrally defined functions of 
mathematics can be extended to fractional arguments. Two possible 
approaches, which are considered here, are (i) to consider Gauss’s 
Arithmetic-Geometric mean and (ii) to consider solutions of the 
functional equation ff(x) = ex . 

Keywords: Ackermann’s function,  tetration, Gauss’s mean, functional 
equations. 



 

1. INTRODUCTION 

Multiplication can be regarded as successive addition, exponentiation as successive multiplication etc. 
The next operation (tetration) requires a stipulation about the order in which successive 
exponentiations are carried out (since exponentiation is not commutative). We therefore consider  the 
hierarchy of functions 

                                                                 a+b 

                                                                 axb = a + a + … a  (b times) 

                                                                 ab     = a x a x … x  a (b times)   

                                                                  ba    =
a

aa
...

      (b times)   

                                                                  etc. 

The fourth operation is usually known as ‘tetration’ and sometimes written as 
indicated. The convention is adopted of assuming bracketing from the top.The 
name was coined by Goodstein [4]. It has received some attention (see the web 
site of  Geisler [3]). In particular defining the function for fractional b presents a 
problem, as discussed below.    

The heirarchy of these functions has also been considered by Rubtsov and 
Romerio [5]. 

We could introduce the successor function a + 1 as the ‘zeroth’ function if we 
wished.  

In order to motivate the problem we will consider a numerical example. 

                                                            2 + 3 = 5 

                                                            2 x 3 = 6  

                                                            23      = 8 

                                                            23     = 16 

Marked on the graph in figure 1 it can be seen that it is possible to draw a 
smooth curve though these values where r = 1, 2, 3, 4 for addition, 
multiplication, exponentiation, tetration respectively. In order to seek the value 
for an operation halfway between + and × we seek the value at the point 
indicated by the arrow.                       
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     Figure 1.  Successive Arithmetic Operations Applied to 2 and 3   



 

2.  ACKERMANN’S FUNCTION  

A generalisation of Ackermann’s function [1] can be defined easily by the 
following recursion. 

 

                                            f(a+1, b+1, c) = f(a, f(a+1,b,c), c)  

                                            with initial conditions 

                                            f(0, b, c) = b+1 

                                            f(1, 0, c) = c 

                                            f(2, 0,c) = 0 

                                            f(a+1, 0, c) = 1 for a> 1  

                                            It is easy to verify that 

                                            f(0, b, c) = b+1      the successor function 

                                            f(1, b, c) = b+c      addition 

                                            f(2, b, c) = bxc      multiplication 

                                            f(3, b, c) = cb         exponentiation 

                                           f(4, b, c) = cb        tetration 

                                           We seek   f( 2
3 / , b,  c). 

Ackermann’s function is usually expressed as a function of 2 arguments by 
fixing c at (say) 2. It is a doubly recursive function which grows faster than any 
primitive recursive function: eg. in order to evaluate f(a+1, . , .) we need to 
evaluate f(a+1, .,.) for smaller arguments and f(a, . , .) for much larger 
arguments. Its ‘explosive’ growth is demonstrated by 

                                           f(0, 3, 2) = 4       

                                           f(1, 3, 2) = 5      

                                           f(2, 3, 2) = 6       

                                           f(3, 3, 2) = 8         

                                          f(4, 3, 2) = 16     

                                          f(5, 3, 2) = 65536        



 

It is interesting to note that f(a, b, c) is not well defined for fractional b either. Eg. 
what is  

                                          (½)2 ? 

We can, however, define  (1/∞ ) 2  . It is √2   since  22 =
∞

. 

3. GAUSS’S ARITHMETIC-GEOMETRIC MEAN  

Let  A(a, b) = (a+b)/2   the arithmetic mean 

      G(a,b)   = √(a x b)  the geometric mean 

M(a, b) , Gauss’s Arithmetic-Geometric mean (see eg. Cox [2]) is ‘halfway 
between’ A(a, b) and G(a, b) and is defined, iteratively, by  

 

a1 = G(a, b),     b1 = A(a, b) 

 an+1= G(an , bn), bn+1 = A(an , bn) 

M(a, b) = Lt n ->∞  an = Lt n ->∞  bn 

For example g(2,128) = 16, A(2,128) = 65, M(2,128) = 36.26  
...  

Since a + b =  A(a, b) x 2  =  A(a, b) 2 2 

          a x b  = G(a, b)2      =  G(a, b) 3 2 

Let     a 3/2 b = M(a, b) 5/2 2  = M(a, b) 3/2 M(a, b)) 

M(a, b) has an analytic solution in terms of elliptic integrals. 

But there is a difficulty.  

Consider the following values on a line.  

 

a bM(M(a,b),b)M(a,M(a,b)) M(a,b)  

 

While M(a,M(a,b)) is the mean of a and M(a,b) and M(M(a,b),b) is the mean of M(a,b) and b, 

 M(a,b) ≠   M(M(a,M(a,b)), M(M(a,b),b)). 

 



4. THE FUNCTIONAL EQUATION ff(x) = ex 

A ‘bridge’ between addition and multiplication is provided by the exponential function (or its inverse , 
the logarithmic function) since 

    e(a+b) = ea x eb. 

Let ff(x) = ex . 

We can define f(a 3/2 b) as f(a) x f(b). 

Therefore we seek solutions of  ff(x) = ex. f(x) is a function ‘between’ x  (ie the 
identity function) and ex. 

This functional equation has been examined by a number of authors. For example  Hammersley  
[5] and subsequent correspondence in the IMA Bulletin. However we seek a solution with a 
number of ‘reasonable’ conditions. In particular we initially demand that f(x) (defined on the non-
negative reals) satisfies 

(i) x <  f(x)  < ex. 
(ii) f(x) is monotonic strictly increasing. 
(iii) f(x) is continuous and infinitely differentiable. 
(iv) The derivatives are monotonic strictly increasing. 

 

Let us define f(0) =p. 

Then f(p) = e0 = 1 

         f(1) = ep  

         f(ep) = f(1) 

 This gives the following table of values 

  x     |      ...10
pep eeep eeeeep      

f(x)    |    ...1
epep eeeep eeeeeep  

 

As  necessary (discrete) conditions for the above (continuous) conditions we 
demand that f(x), its gradients, gradients of gradients etc. are monotonic 
increasing and take intermediate values between the corresponding values of x 
and f(x). This implies 

1 < (1 –p) /p  <  (ep – 1) /(1 – p)        giving      0.469..  <    p   <    0.5 

It would appear that f(x) is not unique. 

 



We plot possible values of  f(x) if we set p at (say) 0.49 giving 

  x     |       0           0.49         1          1.63         2.72         5.10       15.18      . 
.  

f(x)   |      0.49        1          1.63        2.72        5.10        15.18     164.02 
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Figure 2  The functions x, f(x) and ff(x) = ex . 
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